

EECE 3026 – Introduction to Computer Architecture & Organization Spring, 2016

Project #4
Pipelined Machine

Mitch Belcher
Tyler Parcell

4/5/2016

1. High-Level Design and Layout (Complete Machine)

Shown above in the figure is the extremely high-level diagram for the entire pipelined
system. Essentially it consists of a basic state machine (shown as the combination of
the “Timer Unit” and the “Decoder”), the pipelined data path itself (labelled as “Pipeline
Logic Unit”), and the trap handling mechanism (labelled “Trap Handler”). When looking
at the system from this high of a level, it is almost trivial how the system will work and
move data around. The main things to note, however, is that the Timer Unit and the
Trap Handler both control each other, since they are both state machines in themselves.
This results in only one running at a time. For instance, upon system startup, the Trap
Handler is always outputting a TRUE for the EN line of the Timer Unit. This means that
every clock cycle that comes into the system is simply incrementing the Timer Unit. As
the Timer Unit increments, the Decoder takes the numeric value of the Timer Unit and
splits it into four separate control signals. The first three control signals (for Timer value
00 through 10) is used for the Pipeline Logic Unit’s instruction steps for each section
(see section 2 for more details), while the fourth step (for Timer value 11) is used for
register transfers within the Pipeline Logic Unit. Additionally, this fourth step also
triggers the Trap Handler to start running, and causes it to output a FALSE for the EN on
the Timer Unit. Essentially this means that the Timer Unit stops functioning on
successive clock cycles, meaning the Pipeline Logic Unit also stops executing
instructions; the machine is “frozen” in this state. Thus for successive clock cycles, the
Trap Handler executes its steps, which involves checking for traps (see section 3 for
more details). The Trap Handler can then issue direct control signals to the Pipeline
Logic Unit to “fix” the system state in the event of a trap condition. Upon the completion
of the trap handling, the Trap Handler will then output a TRUE for the EN of the Timer
unit, causing BOTH state machines to reset to their zero-state on the next clock cycle,
which then disables the Trap Handler, and the process continues.

2. Pipeline Unit Layout and Structure

2.1. Pipeline Sections

Shown in the image above is the overall pipeline structure of this machine. It
consists of 5 BUSes, numerous registers, and a single ALU, as well as all other
interfacing hardware, such as split instruction and data memories, GPR, ROM,
PSW, and TIMER. A very conscious effort was put into reduction of hardware as
an optimization. For instance, a basic pipeline design would employ input and
output registers for each stage, then simply transfer data between the sages
during successive clock cycles. Here, everything is simply stored in place, and
registers can be accessed by all stages that need them. Additionally, it should be
noted that we only used a single ALU. The ramifications to this will be discussed
in a latter section of this report, and the control signals that had to go into making
this possible, but overall it was with the mindset of again hardware reduction
optimizations. In short, data in this system flows from left to right. The instruction
is read and the system state updated (program counter) along the Fetch BUS,
while all operands of other related addresses are calculated/gathered along the
Decode BUSes. Meanwhile the Execute BUS then performs all calculations
(ALU operations basically) and the Commi BUS is where all changes reach the

system permanently. This independent commit stage was done to help with
hazard considerations, particularly surrounding trap conditions, and is highlighted
at length in section 3 of this report.

2.2. BUS Logistics and Hardware Access

Since the system’s pipeline structure is very “smashed together” if you will (high
cohesion), the BUS organization and access to hardware is very important. To
achieve such high cohesion, particularly when sharing the data memory access
and the single ALU, rules were implemented in the consideration of our control
signals to ensure that no control hazards happened. These rules are as follows:

● Fetch
○ Step 1: Setup system to change state
○ Step 2: Read the Instruction Main Memory
○ Step 3:Grab data from Instruction Main Memory

● Decode
○ Step 1: Perform all ALU calculations for addresses
○ Step 2: NULL - No Operation
○ Step 3: Perform memory operations on the Data Main Memory

● Execute
○ Step 1: Grab any data from the Data Main Memory
○ Step 2: Perform all ALU operations
○ Step 3: NULL - No Operation

● Commit
○ Step 1: Write data and set condition codes.
○ Step 2: NULL or perform a Data Main Memory Write
○ Step 3: NULL - No Operation

2.3. Control Signals

The control signals for this system varied on an instruction by instruction basis,
though all similarities were grouped together to adhere to the generalized steps
as mentioned in the previous sub-section of this report. By adhering to these
generalized steps, the system’s resources (hardware) will not undergo any
structural hazards. In essence the establishing of these generalized steps
prevented/solved these hazards. Specific control signals, however, are
highlighted in the following table (next page) and is colored by logically by groups
of similar functionality (unfortunately it is rotated to fit on a single page).

3. Trap Handling
3.1. Trap Checking System

We designed a small section of circuitry at a high level, that would be used to
handle any traps that occur and check for them in the first place. This can be
seen in the above image. To start with, the whole thing is locked into the cycle
that the 3-bit timer is on, and we then take in four inputs to the flowchart (shown
in section 3.2 below), if the timer has reached zero, if the condition codes match,
if we are executing a privileged instruction in user mode, and if we failed a branch
prediction. These inputs are going to determine the progression made through
the flowchart. Based on them, we will most certainly be able to tell what kind of
trap, if any, we will be dealing with. We then will handle each trap individually, for
modularity, as well as reducing circuit complexity coupled with the desire to
design this pipelined system for the common-case (traps are not common
occurrences for the most part); the way these are handled individually is laid out
in the control signals shown in sections 3.3, 3.4 and 3.5 (these are timeout traps,
privileged mode traps and incorrect branch prediction traps). Each of these
unique sections designed to handle a particular trap process, will have control
signal outputs that will be sent to the pipelined logic unit and used to
appropriately resolve that trap issue, an enable line for the timer/clock system
that controls the rest of the machine (so that we are halted in our cyclic process
until the trap has been dealt with), as well as whatever “doping” is necessary for
the shift register that handles the running list of op/no op bits (in handling a trap,
it may be necessary to send no ops through in certain situations, like flushing a
bus line and it’s registers, therefore we need to make sure those are recorded
into their designated register).

3.2. Trap Priority Logistics

There is actually a bit of priority on the different possible traps of the system, and
we outlined that in the above figure. Due to the fact that a timeout trap at the
commit stage means that the instruction executed just before, should never have
been executed anyway, means it takes priority over the other two trap types. The
other two trap types are basically at the same priority level, given that they can
never both happen at the same time, but are both less important than the timeout
trap.

3.3. Branch Prediction Failure Trap

3.3.1. Didn’t Branch, and Should Have

1. TMPout, GPR[7]-Cin
2. NULL
3. FLUSH

3.3.2. Branched, and Shouldn’t Have

1. PCCout, CROSS, IZin
2. IZout, GPR[7]-Fin
3. FLUSH

3.4. Timeout Trap

1. FLUSH F bus, FLUSH D bus, FLUSH E bus
2. CROSS, ROM[4]out, DMAR-D2in
3. CROSS, PSWout, DMDRin, Write_DMM

4. CROSS, ROM[5]out, DMAR-D2in
5. CROSS, PCCout, DMDRin, Write_DMM
6. CROSS, ROM[6]out, DMAR-D2in, Read_DMM
7. CROSS, DMDRout, PSWin
8. CROSS, ROM[7]out, DMAR-D2in, Read_MM
9. CROSS, DMDRout, GPR[7]-Fin

3.5. Privileged Trap

1. FLUSH F bus, FLUSH D bus
2. CROSS, ROM[0]out, DMAR-D2in
3. CROSS, PSWout, DMDRin, Write_DMM
4. CROSS, ROM[1]out, DMAR-D2in
5. CROSS, PCEout, DMDRin, Write_DMM
6. CROSS, ROM[2]out, DMAR-D2in, Read_DMM
7. CROSS, DMDRout, PSWin
8. CROSS, ROM[3]out, DMAR-D2in, Read_MM
9. CROSS, DMDRout, GPR[7]-Fin

4. Branch Prediction
4.1. Overview of Optimization

The main purpose of the branch predictor is to improve the performance of the
Pipelined machine by making an educated guess at the branching behaviors of
the system. Since the machine is pipelined, the instructions are executed in
several stages (in this casee four separate stages). That means that when an
instruction completes, three other instructions are partially completed already (the
next three). If this leading instruction happens to be a branch instruction, then it
cannot possibly be known whether the system was supposed to take the branch
or not until later in the pipeline. As a result, the system can send “NoOps” (Null
Operations) through the pipeline to wait and see where to go for the next
instruction. Since, however, branching is very common (occurring about 25% of
the time), there would be a huge loss in the performance gain from pipelining to
begin with. As a result, we really don’t want to have to send NoOps through the
pipeline. To remedy this, the system employs a Branch Predictor, which predicts
whether the system is likely going to branch or not, then continues executing
instructions based on this prediction. If the prediction was correct, then the
system continues execution. If the prediction was incorrect, then the system
flushes the work it has done and goes to the correct instruction to begin
execution again. Even if this predictor was completely static (resulting in correct
guesses only 50% of the time), there would still be a dramatic performance
boost, since it would only be flushing half the time. Of course, the higher
accuracy in predictions the better. As a result, we implemented our own
multi-method branch predictor (one was pattern based and one is static) for
handling branch prediction. These two methods are highlighted in the next two
subsections).

4.2. Simple Static Predictor

The simple branch predictor simply consists of statically predicting a FALSE, or
branch not taken every time it is polled. Obviously this method of prediction is
very simplistic, and doesn’t get much optimization to it. This however, is
necessary for when the latter branch predictor isn’t sure what to predict.
Technically yes, the pattern-based branch predictor could still be used, and it
wouldn’t be much different in terms of optimization, but the way it works makes
this a difficult implementation, since the prediction is pulled from an unpopulated
register, if it isn’t “ready” to predict.

4.3. Pattern-Predictor Overview

This main goal of this branch predictor is to analyze the system’s branching
habits/behavior for patterns. This is very likely to occur because of the
organization of computer programs being so focused on looping around data with
internal conditionals. As a result, the branch predictor that we came up with and
implemented in this design takes in data into a shift register to keep track of the
last several branches the system has made. The moment it detects a pattern, it
will attempt to make branch predictions based on this pattern and evaluate
whether or not it is predicting correctly. Obviously this is a very high-level
description of how it works, but if you take a look at the attached Python code (in
the appendix) the methodologies behind its operation become much more clear.

Essentially, the predictor consists of two registers, the “branch history” and the
“branch guess” register. Initially, the branch history register and the guess
register are both empty - full of zeros. When a 1 gets clocked into the branch
history (indicating that a branch was taken), then the system starts to work to find
a pattern. To find a pattern, the system always looks for another 1 to be clocked
into the branch history register. When this occurs, it will assume that a pattern
has been found, and that this 1 represents the start of the pattern again. It is at
this instant that it will copy this register into the guess register. Upon populating
the guess register, the guess register will start issuing predictions, instead of the
static 0 guess mentioned before. This will continue, and the history register wont
accept any more history until the guess register predicts incorrectly, in which
case the guess register is cleared, and more history begins being taken, looking
for yet another 1 to be fed into the system for the process to repeat. It should be
noted that repeated failures will result in longer patterns being detected. Once
the history register becomes saturated though (full), the system will “give up” on
looking for longer patterns, and clear both registers on the next failure and begin
the process all over again. It turns out that this method (when tested with Python
code) is extremely effective at detecting short patterns and is also quick to lock
onto patterns when they switch, which is exactly what was desired out of the
system. Specific performance metrics are discussed later in the next sub-section
of this report.

4.4. Performance Data

Shown below in the figure is the results of putting the branch predictor into a
situation where it had to detect several patterns. Specifically, the tests that were
conducted involved generating 100 random 2-bit, 3-bit, 4-bit, and 5-bit patterns,
then running each for anywhere between 100 and 10,000 times through the
branch predictor, then tracking how often it would guess correctly. As you can
see, the branch predictor is phenomenal at predicting 2 and 3 bit patterns,
yielding an almost perfect prediction rate (the data showed about 99.96%
accuracy for both). WHen looking at the 4-bit pattern, the average for the tests
was more like 78.94% accuracy and the 5-bit pattern was around 63.26%
accuray. When the test was then conducted using equal probabilities of each
showing up for all 100 generated patterns, the average ended up being 80.91%
accuracy. So overall, he branch predictor seems to have an 80% accuracy in
predicting the branches of the system, which is quite good overall. How does this
affect the system? Since branches occur about 25% of the time in the system’s
execution of a program, and the predictor only guesses incorrectly about only
20% of the time, whenever a given instruction is executed, it will only result in a
flushing of previous steps (due to the incorrect branch prediction) 5% of the time
(20%*25%); the other 95% of the time, the system’s pipeline is unaffected and
operating smoothly.

5. Hazard Reduction
5.1. Data Forwarding (Execute and Decode, Commit and Execute)

Data Forwarding, in general, is a common solution to a data hazard (an issue
where you are trying to use data in, say, an execute step relies on a piece of
information that must be decoded in the decode state). It works by “forwarding”
the operands to the step that needs them. Specifically for our case, we could
have ran into an issue where the execute stage is using data from the main
memory or registers that are going to be overwritten by the commit stage. To
solve this problem, we send that destination information from commit back to
execute to ensure it is using the correct values. We decided that this would most
efficiently be executed on the falling edge of the clock signal, because we
originally weren’t taking advantage of that edge.

From the image above, you can see an abstraction of this implementation. We
have three possible control signals to send to forward the data back to a previous
stage in question. Firstly, we compare the value of the current opcode to the
opcode corresponding to the “store” instruction. If we are indeed executing a
store instruction, then we send a 1 from the top output. Similarly, in the event
that the Data MAR address and the address in the temp register are the same,
we send another one to the same AND gate. This will initiate a tri-state buffer
that will now allow information to be passed through hardwired connections to
send the current value of the RdE register into the Data MDR. This is because in
the event we are executing a store instruction, we will potentially have an issue
trying to read and write from the Data section of the main memory (this is the only
instruction with this hazard), and therefore we need to alleviate the issue by
sending the correct data back. Likewise, the other two outputs for hardwired
control signals, are only ever active under certain circumstances where two
stages are attempting to read and modify data at the same time, in which case,

we backtrack the values that the previous stage needs so that it’s cycling
correctly.

5.2. Branch Predictor Address Forwarding (Decode and Fetch)

Similarly to the previous section (5.1) regarding data forwarding, we also
encounter a hazard in which occurs when we predict that we need to branch, but
we have already started passing through the addresses and data from the next
instruction in the list. To combat this, we designed a data forwarding system, that
like the previous section works on the falling edge of the clock signal, that will
pass the proper branched address back into the system to read. This works by
using the Branch Predictor, already outlined in section 4, along with the inverted
clock signal and the timer/state machine signal for the first step. What will
happen in this scenario is, only when we are going to predict a branch, and we
are in the first step of the cycle and the clock signal is low, we are going to
enable hardwired connections on tri-state buffers to pass this new branched
address, into the Z1 register so that we can send it to the other two registers: the
Instruction MAR (to read the right address, before it was set to the next
incremented instruction address, now it’s a branched address), as well as
sending it into the Iz register on the Fetch bus to start our new incrementing of
the instructions from our branched address.

5.3. Commit Stage Purpose (Trap Handling)

We decided to add a “commit” stage to our state machine operation and design
for a few reasons. The main one being that, including a stage such as this allows
the possible issue of incorrectly predicting a branch to be resolved much simpler.
In a normal case without a stage that operates like this, we could have something
like the following take place: We predict a branch path, and proceed to execute
that new (branched) instruction. It’s possible that our branch prediction circuitry
incorrectly predicted the branch (we branched, but we weren’t supposed to, or we
didn’t branch and were supposed to). In this event, normally, without the commit
stage, we would then need to go back to all of the register entries and main
memory addresses and return them to their appropriate values for what was
supposed to happen. This would require saving the information along the way,
so that we could overwrite the information if something like this happened.

However, if you have a commit stage, this issue is resolved much simpler. A
commit stage allows us to write values at the last possible moment, giving us
time to determine if the branch was correctly predicted or not. In the event that it
wasn’t, this stage allows us to simply flush all of the buses, and reset our
program counter to where it should be. We won’t have to save any of the
information along the way, because we intentionally don’t overwrite anything until
we’re sure that we were correct to begin with.

To activate the commit stage tri-state buffers, we require multiple inputs to
determine whether or not this information should be written. We use a small
four-bit shift-register to contain the last four opcode states (1 for an opcode, 0 for
no opcode). If the last of these signals in the register at the end of the shifting is
a 1, we send a 1 to an AND gate, and if it was a 0, we do nothing. This signifies
whether or not we want to commit the data and whether or not the current values
sitting throughout the control unit/data path are garbage values or not. Now the
other input to that AND gate is the output of some simple circuitry that checks the
two condition code bits for the current instruction from the ALU against the
current PSW bits to determine if that instruction was supposed to be executed or
not. If this is a 1, then we are good to send the all clear to the commit stage
tri-state buffers and proceed in writing the data to their locations. If not, then we
shouldn’t have executed that data, and therefore, we won’t actually commit any
of the data calculations/changes we just came up with.

This is a big benefit to our design because it means we are always assuming the
best case and the most common case: that we are doing exactly what we are
supposed to do. Instead of changing everything in the event we get something
wrong or adding a massive amount of circuitry to withhold values as we go in
case we overwrite things that shouldn’t have been overwritten, we simply use
some simple logic to determine whether or not we should let the writing of the
data happen or not.

6. Appendix

6.1. Branch Predictor Raw Data

 2-Pattern 3-Pattern 4-Pattern 5-Pattern Mixed

Test 1 0.9976588465 0.9997394626 0.8406845004 0.6368842897 0.8375348977

Test 2 0.9996657406 0.9997510591 0.8158370703 0.64761996 0.7729328173

Test 3 0.9997971497 0.9995822585 0.8081267761 0.6558355847 0.8526096767

Test 4 0.9997885098 0.9997184711 0.6995061189 0.6358231741 0.8270728274

Test 5 0.9991129032 0.9994990044 0.7665358268 0.572564131 0.8099138641

Test 6 0.9997616184 0.9995782137 0.7997979179 0.5939628441 0.8221717169

Test 7 0.9994366825 0.9992459158 0.7497900763 0.6070293454 0.8028114865

Test 8 0.995037594 0.9988871224 0.7578393598 0.6475792079 0.8213603675

Test 9 0.9995311628 0.9996883742 0.7913035775 0.6432703372 0.7967724544

Test 10 0.9997276853 0.999196804 0.8331138096 0.6419244392 0.7700135545

Test Averages 0.9996106126 0.9995933268 0.7893566891 0.6325625818 0.8091123011

6.2. Python Code

The following pages are the python code for the branch predictor, added in
addition to the document to preserve the syntax highlighting.

