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1. High-Level Design and Layout (Complete Machine) 
 

 
Shown above in the figure is the extremely high-level diagram for the entire pipelined              
system. Essentially it consists of a basic state machine (shown as the combination of              
the “Timer Unit” and the “Decoder”), the pipelined data path itself (labelled as “Pipeline              
Logic Unit”), and the trap handling mechanism (labelled “Trap Handler”). When looking            
at the system from this high of a level, it is almost trivial how the system will work and                   
move data around. The main things to note, however, is that the Timer Unit and the                
Trap Handler both control each other, since they are both state machines in themselves.              
This results in only one running at a time. For instance, upon system startup, the Trap                
Handler is always outputting a TRUE for the EN line of the Timer Unit. This means that                 
every clock cycle that comes into the system is simply incrementing the Timer Unit. As               
the Timer Unit increments, the Decoder takes the numeric value of the Timer Unit and               
splits it into four separate control signals. The first three control signals (for Timer value               
00 through 10) is used for the Pipeline Logic Unit’s instruction steps for each section               
(see section 2 for more details), while the fourth step (for Timer value 11) is used for                 
register transfers within the Pipeline Logic Unit. Additionally, this fourth step also            
triggers the Trap Handler to start running, and causes it to output a FALSE for the EN on                  
the Timer Unit. Essentially this means that the Timer Unit stops functioning on             
successive clock cycles, meaning the Pipeline Logic Unit also stops executing           
instructions; the machine is “frozen” in this state. Thus for successive clock cycles, the              
Trap Handler executes its steps, which involves checking for traps (see section 3 for              
more details). The Trap Handler can then issue direct control signals to the Pipeline              
Logic Unit to “fix” the system state in the event of a trap condition. Upon the completion                 
of the trap handling, the Trap Handler will then output a TRUE for the EN of the Timer                  
unit, causing BOTH state machines to reset to their zero-state on the next clock cycle,               
which then disables the Trap Handler, and the process continues. 



 

2. Pipeline Unit Layout and Structure 
 
2.1. Pipeline Sections 

Shown in the image above is the overall pipeline structure of this machine. It              
consists of 5 BUSes, numerous registers, and a single ALU, as well as all other               
interfacing hardware, such as split instruction and data memories, GPR, ROM,           
PSW, and TIMER. A very conscious effort was put into reduction of hardware as              
an optimization. For instance, a basic pipeline design would employ input and            
output registers for each stage, then simply transfer data between the sages            
during successive clock cycles. Here, everything is simply stored in place, and            
registers can be accessed by all stages that need them. Additionally, it should be              
noted that we only used a single ALU. The ramifications to this will be discussed               
in a latter section of this report, and the control signals that had to go into making                 
this possible, but overall it was with the mindset of again hardware reduction             
optimizations. In short, data in this system flows from left to right. The instruction              
is read and the system state updated (program counter) along the Fetch BUS,             
while all operands of other related addresses are calculated/gathered along the           
Decode BUSes. Meanwhile the Execute BUS then performs all calculations          
(ALU operations basically) and the Commi BUS is where all changes reach the             



 

system permanently. This independent commit stage was done to help with           
hazard considerations, particularly surrounding trap conditions, and is highlighted         
at length in section 3 of this report. 
 

2.2. BUS Logistics and Hardware Access 
 

Since the system’s pipeline structure is very “smashed together” if you will (high             
cohesion), the BUS organization and access to hardware is very important. To            
achieve such high cohesion, particularly when sharing the data memory access           
and the single ALU, rules were implemented in the consideration of our control             
signals to ensure that no control hazards happened.  These rules are as follows: 
 

● Fetch 
○ Step 1: Setup system to change state 
○ Step 2: Read the Instruction Main Memory 
○ Step 3:Grab data from Instruction Main Memory 

● Decode 
○ Step 1: Perform all ALU calculations for addresses 
○ Step 2: NULL - No Operation 
○ Step 3: Perform memory operations on the Data Main Memory 

● Execute 
○ Step 1: Grab any data from the Data Main Memory 
○ Step 2: Perform all ALU operations 
○ Step 3: NULL - No Operation 

● Commit 
○ Step 1: Write data and set condition codes. 
○ Step 2: NULL or perform a Data Main Memory Write 
○ Step 3: NULL - No Operation 

 
2.3. Control Signals 

 
The control signals for this system varied on an instruction by instruction basis,             
though all similarities were grouped together to adhere to the generalized steps            
as mentioned in the previous sub-section of this report. By adhering to these             
generalized steps, the system’s resources (hardware) will not undergo any          
structural hazards. In essence the establishing of these generalized steps          
prevented/solved these hazards. Specific control signals, however, are        
highlighted in the following table (next page) and is colored by logically by groups              
of similar functionality (unfortunately it is rotated to fit on a single page). 
 
 
 
 



 

  



 

3. Trap Handling 
3.1. Trap Checking System 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

We designed a small section of circuitry at a high level, that would be used to                
handle any traps that occur and check for them in the first place. This can be                
seen in the above image. To start with, the whole thing is locked into the cycle                
that the 3-bit timer is on, and we then take in four inputs to the flowchart (shown                 
in section 3.2 below), if the timer has reached zero, if the condition codes match,               
if we are executing a privileged instruction in user mode, and if we failed a branch                
prediction. These inputs are going to determine the progression made through           
the flowchart. Based on them, we will most certainly be able to tell what kind of                
trap, if any, we will be dealing with. We then will handle each trap individually, for                
modularity, as well as reducing circuit complexity coupled with the desire to            
design this pipelined system for the common-case (traps are not common           
occurrences for the most part); the way these are handled individually is laid out              
in the control signals shown in sections 3.3, 3.4 and 3.5 (these are timeout traps,               
privileged mode traps and incorrect branch prediction traps). Each of these           
unique sections designed to handle a particular trap process, will have control            
signal outputs that will be sent to the pipelined logic unit and used to              
appropriately resolve that trap issue, an enable line for the timer/clock system            
that controls the rest of the machine (so that we are halted in our cyclic process                
until the trap has been dealt with), as well as whatever “doping” is necessary for               
the shift register that handles the running list of op/no op bits (in handling a trap,                
it may be necessary to send no ops through in certain situations, like flushing a               
bus line and it’s registers, therefore we need to make sure those are recorded              
into their designated register). 

 



 

3.2. Trap Priority Logistics 

There is actually a bit of priority on the different possible traps of the system, and                
we outlined that in the above figure. Due to the fact that a timeout trap at the                 
commit stage means that the instruction executed just before, should never have            
been executed anyway, means it takes priority over the other two trap types. The              
other two trap types are basically at the same priority level, given that they can               
never both happen at the same time, but are both less important than the timeout               
trap. 

 
3.3. Branch Prediction Failure Trap 

3.3.1. Didn’t Branch, and Should Have 
 

1. TMPout, GPR[7]-Cin 
2. NULL 
3. FLUSH 

 
3.3.2. Branched, and Shouldn’t Have 

 
1. PCCout, CROSS, IZin 
2. IZout, GPR[7]-Fin 
3. FLUSH 

 
3.4. Timeout Trap 

 
1. FLUSH F bus, FLUSH D bus, FLUSH E bus 
2. CROSS, ROM[4]out, DMAR-D2in 
3. CROSS, PSWout, DMDRin, Write_DMM 



 

4. CROSS, ROM[5]out, DMAR-D2in 
5. CROSS, PCCout, DMDRin, Write_DMM 
6. CROSS, ROM[6]out, DMAR-D2in, Read_DMM 
7. CROSS, DMDRout, PSWin 
8. CROSS, ROM[7]out, DMAR-D2in, Read_MM 
9. CROSS, DMDRout, GPR[7]-Fin 

 
3.5. Privileged Trap 
 

1. FLUSH F bus, FLUSH D bus 
2. CROSS, ROM[0]out, DMAR-D2in 
3. CROSS, PSWout, DMDRin, Write_DMM 
4. CROSS, ROM[1]out, DMAR-D2in 
5. CROSS, PCEout, DMDRin, Write_DMM 
6. CROSS, ROM[2]out, DMAR-D2in, Read_DMM 
7. CROSS, DMDRout, PSWin 
8. CROSS, ROM[3]out, DMAR-D2in, Read_MM 
9. CROSS, DMDRout, GPR[7]-Fin  



 

4. Branch Prediction 
4.1. Overview of Optimization 

 
The main purpose of the branch predictor is to improve the performance of the              
Pipelined machine by making an educated guess at the branching behaviors of            
the system. Since the machine is pipelined, the instructions are executed in            
several stages (in this casee four separate stages). That means that when an             
instruction completes, three other instructions are partially completed already (the          
next three). If this leading instruction happens to be a branch instruction, then it              
cannot possibly be known whether the system was supposed to take the branch             
or not until later in the pipeline. As a result, the system can send “NoOps” (Null                
Operations) through the pipeline to wait and see where to go for the next              
instruction. Since, however, branching is very common (occurring about 25% of           
the time), there would be a huge loss in the performance gain from pipelining to               
begin with. As a result, we really don’t want to have to send NoOps through the                
pipeline. To remedy this, the system employs a Branch Predictor, which predicts            
whether the system is likely going to branch or not, then continues executing             
instructions based on this prediction. If the prediction was correct, then the            
system continues execution. If the prediction was incorrect, then the system           
flushes the work it has done and goes to the correct instruction to begin              
execution again. Even if this predictor was completely static (resulting in correct            
guesses only 50% of the time), there would still be a dramatic performance             
boost, since it would only be flushing half the time. Of course, the higher              
accuracy in predictions the better. As a result, we implemented our own            
multi-method branch predictor (one was pattern based and one is static) for            
handling branch prediction. These two methods are highlighted in the next two            
subsections). 
 

4.2. Simple Static Predictor 
 
The simple branch predictor simply consists of statically predicting a FALSE, or            
branch not taken every time it is polled. Obviously this method of prediction is              
very simplistic, and doesn’t get much optimization to it. This however, is            
necessary for when the latter branch predictor isn’t sure what to predict.            
Technically yes, the pattern-based branch predictor could still be used, and it            
wouldn’t be much different in terms of optimization, but the way it works makes              
this a difficult implementation, since the prediction is pulled from an unpopulated            
register, if it isn’t “ready” to predict. 
  



 

4.3. Pattern-Predictor Overview 
 

This main goal of this branch predictor is to analyze the system’s branching             
habits/behavior for patterns. This is very likely to occur because of the            
organization of computer programs being so focused on looping around data with            
internal conditionals. As a result, the branch predictor that we came up with and              
implemented in this design takes in data into a shift register to keep track of the                
last several branches the system has made. The moment it detects a pattern, it              
will attempt to make branch predictions based on this pattern and evaluate            
whether or not it is predicting correctly. Obviously this is a very high-level             
description of how it works, but if you take a look at the attached Python code (in                 
the appendix) the methodologies behind its operation become much more clear. 
 
Essentially, the predictor consists of two registers, the “branch history” and the            
“branch guess” register. Initially, the branch history register and the guess           
register are both empty - full of zeros. When a 1 gets clocked into the branch                
history (indicating that a branch was taken), then the system starts to work to find               
a pattern. To find a pattern, the system always looks for another 1 to be clocked                
into the branch history register. When this occurs, it will assume that a pattern              
has been found, and that this 1 represents the start of the pattern again. It is at                 
this instant that it will copy this register into the guess register. Upon populating              
the guess register, the guess register will start issuing predictions, instead of the             
static 0 guess mentioned before. This will continue, and the history register wont             
accept any more history until the guess register predicts incorrectly, in which            
case the guess register is cleared, and more history begins being taken, looking             
for yet another 1 to be fed into the system for the process to repeat. It should be                  
noted that repeated failures will result in longer patterns being detected. Once            
the history register becomes saturated though (full), the system will “give up” on             
looking for longer patterns, and clear both registers on the next failure and begin              
the process all over again. It turns out that this method (when tested with Python               
code) is extremely effective at detecting short patterns and is also quick to lock              
onto patterns when they switch, which is exactly what was desired out of the              
system. Specific performance metrics are discussed later in the next sub-section           
of this report. 
 

 
 
 
 
 
 
 
 



 

4.4. Performance Data 
 

Shown below in the figure is the results of putting the branch predictor into a               
situation where it had to detect several patterns. Specifically, the tests that were             
conducted involved generating 100 random 2-bit, 3-bit, 4-bit, and 5-bit patterns,           
then running each for anywhere between 100 and 10,000 times through the            
branch predictor, then tracking how often it would guess correctly. As you can             
see, the branch predictor is phenomenal at predicting 2 and 3 bit patterns,             
yielding an almost perfect prediction rate (the data showed about 99.96%           
accuracy for both). WHen looking at the 4-bit pattern, the average for the tests              
was more like 78.94% accuracy and the 5-bit pattern was around 63.26%            
accuray. When the test was then conducted using equal probabilities of each            
showing up for all 100 generated patterns, the average ended up being 80.91%             
accuracy. So overall, he branch predictor seems to have an 80% accuracy in             
predicting the branches of the system, which is quite good overall. How does this              
affect the system? Since branches occur about 25% of the time in the system’s              
execution of a program, and the predictor only guesses incorrectly about only            
20% of the time, whenever a given instruction is executed, it will only result in a                
flushing of previous steps (due to the incorrect branch prediction) 5% of the time              
(20%*25%); the other 95% of the time, the system’s pipeline is unaffected and             
operating smoothly. 

 



 

5. Hazard Reduction 
5.1. Data Forwarding (Execute and Decode, Commit and Execute) 

 

Data Forwarding, in general, is a common solution to a data hazard (an issue              
where you are trying to use data in, say, an execute step relies on a piece of                 
information that must be decoded in the decode state). It works by “forwarding”             
the operands to the step that needs them. Specifically for our case, we could              
have ran into an issue where the execute stage is using data from the main               
memory or registers that are going to be overwritten by the commit stage. To              
solve this problem, we send that destination information from commit back to            
execute to ensure it is using the correct values. We decided that this would most               
efficiently be executed on the falling edge of the clock signal, because we             
originally weren’t taking advantage of that edge. 
 
From the image above, you can see an abstraction of this implementation. We             
have three possible control signals to send to forward the data back to a previous               
stage in question. Firstly, we compare the value of the current opcode to the              
opcode corresponding to the “store” instruction. If we are indeed executing a            
store instruction, then we send a 1 from the top output. Similarly, in the event               
that the Data MAR address and the address in the temp register are the same,               
we send another one to the same AND gate. This will initiate a tri-state buffer               
that will now allow information to be passed through hardwired connections to            
send the current value of the RdE register into the Data MDR. This is because in                
the event we are executing a store instruction, we will potentially have an issue              
trying to read and write from the Data section of the main memory (this is the only                 
instruction with this hazard), and therefore we need to alleviate the issue by             
sending the correct data back. Likewise, the other two outputs for hardwired            
control signals, are only ever active under certain circumstances where two           
stages are attempting to read and modify data at the same time, in which case,               



 

we backtrack the values that the previous stage needs so that it’s cycling             
correctly. 

 
5.2. Branch Predictor Address Forwarding (Decode and Fetch) 

 
 

 
 

 
 
 
 

Similarly to the previous section (5.1) regarding data forwarding, we also           
encounter a hazard in which occurs when we predict that we need to branch, but               
we have already started passing through the addresses and data from the next             
instruction in the list. To combat this, we designed a data forwarding system, that              
like the previous section works on the falling edge of the clock signal, that will               
pass the proper branched address back into the system to read. This works by              
using the Branch Predictor, already outlined in section 4, along with the inverted             
clock signal and the timer/state machine signal for the first step. What will             
happen in this scenario is, only when we are going to predict a branch, and we                
are in the first step of the cycle and the clock signal is low, we are going to                  
enable hardwired connections on tri-state buffers to pass this new branched           
address, into the Z1 register so that we can send it to the other two registers: the                 
Instruction MAR (to read the right address, before it was set to the next              
incremented instruction address, now it’s a branched address), as well as           
sending it into the Iz register on the Fetch bus to start our new incrementing of                
the instructions from our branched address. 

 
5.3. Commit Stage Purpose (Trap Handling) 

 
We decided to add a “commit” stage to our state machine operation and design              
for a few reasons. The main one being that, including a stage such as this allows                
the possible issue of incorrectly predicting a branch to be resolved much simpler.             
In a normal case without a stage that operates like this, we could have something               
like the following take place: We predict a branch path, and proceed to execute              
that new (branched) instruction. It’s possible that our branch prediction circuitry           
incorrectly predicted the branch (we branched, but we weren’t supposed to, or we             
didn’t branch and were supposed to). In this event, normally, without the commit             
stage, we would then need to go back to all of the register entries and main                
memory addresses and return them to their appropriate values for what was            
supposed to happen. This would require saving the information along the way,            
so that we could overwrite the information if something like this happened.            



 

However, if you have a commit stage, this issue is resolved much simpler. A              
commit stage allows us to write values at the last possible moment, giving us              
time to determine if the branch was correctly predicted or not. In the event that it                
wasn’t, this stage allows us to simply flush all of the buses, and reset our               
program counter to where it should be. We won’t have to save any of the               
information along the way, because we intentionally don’t overwrite anything until           
we’re sure that we were correct to begin with. 
 
To activate the commit stage tri-state buffers, we require multiple inputs to            
determine whether or not this information should be written. We use a small             
four-bit shift-register to contain the last four opcode states (1 for an opcode, 0 for               
no opcode). If the last of these signals in the register at the end of the shifting is                  
a 1, we send a 1 to an AND gate, and if it was a 0, we do nothing. This signifies                     
whether or not we want to commit the data and whether or not the current values                
sitting throughout the control unit/data path are garbage values or not. Now the             
other input to that AND gate is the output of some simple circuitry that checks the                
two condition code bits for the current instruction from the ALU against the             
current PSW bits to determine if that instruction was supposed to be executed or              
not. If this is a 1, then we are good to send the all clear to the commit stage                   
tri-state buffers and proceed in writing the data to their locations. If not, then we               
shouldn’t have executed that data, and therefore, we won’t actually commit any            
of the data calculations/changes we just came up with. 
 
This is a big benefit to our design because it means we are always assuming the                
best case and the most common case: that we are doing exactly what we are               
supposed to do. Instead of changing everything in the event we get something             
wrong or adding a massive amount of circuitry to withhold values as we go in               
case we overwrite things that shouldn’t have been overwritten, we simply use            
some simple logic to determine whether or not we should let the writing of the               
data happen or not.  



 

6. Appendix 
 
6.1. Branch Predictor Raw Data 
 

 
 2-Pattern 3-Pattern 4-Pattern 5-Pattern Mixed 

Test 1 0.9976588465 0.9997394626 0.8406845004 0.6368842897 0.8375348977 

Test 2 0.9996657406 0.9997510591 0.8158370703 0.64761996 0.7729328173 

Test 3 0.9997971497 0.9995822585 0.8081267761 0.6558355847 0.8526096767 

Test 4 0.9997885098 0.9997184711 0.6995061189 0.6358231741 0.8270728274 

Test 5 0.9991129032 0.9994990044 0.7665358268 0.572564131 0.8099138641 

Test 6 0.9997616184 0.9995782137 0.7997979179 0.5939628441 0.8221717169 

Test 7 0.9994366825 0.9992459158 0.7497900763 0.6070293454 0.8028114865 

Test 8 0.995037594 0.9988871224 0.7578393598 0.6475792079 0.8213603675 

Test 9 0.9995311628 0.9996883742 0.7913035775 0.6432703372 0.7967724544 

Test 10 0.9997276853 0.999196804 0.8331138096 0.6419244392 0.7700135545 

Test Averages 0.9996106126 0.9995933268 0.7893566891 0.6325625818 0.8091123011 

 
 
6.2. Python Code 
 

The following pages are the python code for the branch predictor, added in             
addition to the document to preserve the syntax highlighting. 


